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Free-energy landscapes govern biological phenomena
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Example: Biological membrane transport

» Efficient and selective transport through a variety of pores and channels
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» Mechanism of selective transport: size, shape, specific binding...?
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Our experimental model for membrane transport

Biological channels ‘Microscale
Colloidal model channel

Length scales~nm Length scales~um
Timescales~ ns Timescales~ s

Molecular systems are difficult to visualise and directly manipulate...
...S0 consider a colloidal model system that is more experimentally accessible
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Colloidal system offers full control over all key parameters

Experimental approach:
colloids + microfluidics +
optical tweezers

No imposed
potential (free
diffusion)

e Controlled channel structure

 Controlled interactions

Four optical
traps

* Resolved transport dynamics E a

~d5 um
- Explore links between structure/interactions and dynamics
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First passage times are easy to observe with colloids

* First passage time = time it takes
for a process to attain a certain
value for the first time i.e. how long
does it take a particle to exit a
channel

Time (s)

tepr
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Full first passage time distributions can be measured

Probability distribution of first passage
times, P(tgpt) = probability an event will
happen for the first time after a certain
elapsed time

Crucially,
P(trpT) sensitively linked to underlying free

energy landscape

P(trpr)

trpr(S)
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Does the shape of the first passage time distribution reveal
details of the potential landscape?
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Model channel system with four states

Potential landscapes with multiple

minima imposed with optical Left exit | _Right exit
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2D histogram of particle positions Potential landscape,

U(x)~ —In(P(x))
with P(x) the probability distribution
of particle positions
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First passage distributions on a linear scale appear similar...
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...but potential minima qualitatively change distributions
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First passage time distributions in a 1D network

Short-time regime:

Simulation results:
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crossed to exit

Li and Kolomeisky, J. Chem. Phys, (2013)




Short-time regime reflects number of potential minima
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Distributions exhibit a short-time power law regime %% S ﬁ%’%
with P(tzpt) ~ t™ scaling consistent with theory "e,o; 2
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Length of power law regime increases with AU

Short-time regime for m=2
distributions

1 + All distributions exhibit a

power-law regime, tM, with

. m~2

W4 » Length of power-law (linear)
| region increases with AU
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Length of power law regime increases with AU

Short-time regime for m=2
distributions

| « All distributions exhibit a
power-law regime, tM, with
. m~2

W4 + Length of power-law (linear)
4 region increases with AU
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Length of power law regime scales linearly with AU
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Length of power law
regime scales with
potential depth

—->Residence time
important

—>Route to infer
potential depth
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Molecular example 1: biological pore transport
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Data from Bayley group, University of Oxford
Qing et al, Science (2018)
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Molecular example 2: (un)folding of a DNA hairpin

Folded Unfolded

Force

Time
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Molecular example 2: (un)folding of a DNA hairpin
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Universal behaviour of the FPT distribution
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